周伟杰
发布时间: 2021-06-15 访问次数: 3119
周伟杰
管理学博士
教授/硕士生导师
wjzhou@cczu.edu.cn
教育经历
南京航空航天大学管理学博士
工作经历
常州大学,教师
主要研究方向
能源、环境、经济系统、金融市场的预测分析等;
主持的主要研究项目
主持完成国家自然科学基金委员会项目一项,目前主持国家社科基金一项。
代表性成果(第一作者)
灰色、能源经济预测:
1. A novel grey seasonal model with time power for energy prediction.
Expert Systems with Applications, 2025, 259: 125356. (中科院一区TOP, IF=8.45, SCI收录)
2. A seasonal grey model for forecasting energy imports demand from
information differences perspective. Applied Mathematical Modelling, 2025, 140: 115907. (中科院二区, IF=4.2, SCI收录)
3. Predicting seasonal patterns of energy production: A grey seasonal trend least
squares support vector machine, Expert Systems With Applications,213 (2023), 118874.(中科院一区TOP, IF=8.45, SCI收录)
4. Electricity consumption and production forecasting considering seasonal
patterns: An investigation based on a novel seasonal discrete grey model, Journal of the Operational Research Society, DOI:10.1080/01605682.2022.2085065.(SSCI收录,ABS3).
5. A novel grey seasonal model based on cycle accumulation generation for
forecasting energy consumption in China,Computers & Industrial Engineering, 2022,163:107725. (中科院一区, IF=7.18, SSCI&SCI收录,ABS2).
6. A novel grey prediction model for seasonal time series[J]. Knowledge-Based Systems, 2021, 229. (SCI, 中科院一区,TOP, IF=8.038).
7. Predictions and mitigation strategies of PM2.5 concentration in the Yangtaze River Delta of China based on a novel nonlinear seasonal grey model. Environmental Pollution, 2021, 276: 116614. (SCI, 中科院二区,Top, IF=6.792).
8. A grey seasonal least square support vector regression model for time series
forecasting. ISA Transactions, 2021,114: 82-98 (SCI, 中科院二区,Top,IF=4.305)
9. Predictive analysis of the air quality indicators in the Yangtze River Delta in China: An application of a novel seasonal grey model. Science of the Total Environment, 2020,748:141428. (SCI, 中科院一区,Top,IF=6.551)
10. A novel discrete grey seasonal model and its applications. Communications in Nonlinear Science and Numerical Simulation, 2020, 93:105493. (SSCI/SCI, 中科院一区,Top, IF=4.115).
11. Application of a novel discrete grey model for forecasting natural gas
consumption: A case study of Jiangsu Province in China. Energy, 2020: 117443. (SCI, 中科院一区,Top, IF=6.082).
12. 基于动态局部累加生成的灰色预测建模及应用[J].系统工程理论与实
践, 2023, 43(11): 3353-3364. (CSSCI/EI,基金委A刊).
13. 基于可重复性分数阶灰色时间幂模型的中国水电消费预测研究,中国管
理科学. 中国管理科学,2023,31(5):279-286. (CSSC,基金委A刊).
14. 灰色广义Verhulst模型的构建及其应用,系统工程理论与实践.2020,40(1):230-239(CSSCI/EI,基金委A刊).
15. 向量灰色模型的建立及应用.运筹与管理. 2019.28(10):150-155.(基金委A刊)
16. 新息优先累加灰色离散模型的构建及应用.中国管理科学,2017,25(8):140-148. (CSSCI,基金委A刊).
17. GM(1,1) cosine Self-Memory model and its application. Journal of Grey System, 2015, 27(3):213-222.(SCI, 中科院四区,IF=1.65)
18. 弱化缓冲算子作用强度及光滑性比较,系统工程理论与实践,2013,33(11),
2903-2909.(CSSCI,基金委A刊).
19. 区间灰数的灰色变权与定权聚类模型.系统工程理论与实践, 2013,33(10),2590-2595.(CSSCI,基金委A刊).
金融市场分析:
20. Recurrence intervals analysis of CSI300 future based on high frequency data. Economic Computation and Economic Cybernetics Studies and Research, 2020, 54(2): 299-314.(SSCI).
21. The Optimal Bandwidth Parameter Selection in GPH Estimation. Journal of
Mathematic, 2021, 2876000.(SSCI).
22. Forecasting the realized volatility of CSI 300. Physica A, 2019531:121799.(SSCI, 中科院二区,IF=3.78).
23. Modelling volatility recurrence intervals in the Chinese commodity futures market. Physica A,2016,457:514-525.(SSCI,中科院二区,IF=3.78)
24. Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm. Physica A, 2013, 392(6):1429-1438.(SSCI).
25. 基于灰色算子的分形法及应用.中国管理科学,2017,25(10):89-99.(CSSCI,基金委A刊).
26. 配分函数法的改进及应用,系统工程理论与实践, 2014,34(3),668-675.(CSSCI,基金委A刊).
27. 股指期货和现货的线性,非线性Granger因果关系分析——基于1分钟高频数据的实证研究[J].常州大学学报:社会科学版, 2015, 16(4):45-51.
学术获奖及荣誉
1.第一届洪银兴经济学奖一等奖
2.江苏省哲学社会科学界第八届学术大会优秀论文一等奖
3.2017年度常州大学青年教师课堂教学技艺大赛三等奖
教学成果及社会兼职
1.已指导的本硕学生中,多人获得国家奖学金、校科研创新奖等。
2.担任《The Journal of Grey System》(SCI)编委,担任多个SSCI、SCI期刊的审稿人.